

SINGLE-PASS SERIAL SCHEDULING
HEURISTIC FOR EGLIN AFB RANGE

SERVICES DIVISION SCHEDULE

GRADUATE RESEARCH PROJECT

Matthew Liljenstolpe, Major, USAF

AFIT-IOA-ENS-09C-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
United States Government.

AFIT-IOA-ENS-09C-02

SINGLE-PASS SERIAL SCHEDULING HEURISTIC FOR EGLIN AFB RANGE
SERVICES DIVISION SCHEDULE

GRADUATE RESEARCH PROJECT

Presented to the Faculty

Department of Operational Sciences

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Analysis

Matthew Liljenstolpe, BS

Major, USAF

June 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-IOA-ENS-09C-02

SINGLE-PASS SERIAL SCHEDULING HEURISTIC FOR EGLIN AFB RANGE
SERVICES DIVISION SCHEDULE

Matthew Liljenstolpe, BS
Major, USAF

 Approved:

 _//signed//______________ 12 Jan 2009
 James T. Moore, PhD date

iv

AFIT-IOA-ENS-09C-02

Abstract

The Air Armament Center (AAC) located at Eglin Air Force Base (AFB) Florida,

conducts test and evaluation of United States Air Force (USAF) weapons systems. To

enable this, the AAC operates the Eglin Test and Training Complex (ETTC), the largest

test range in the United States. InDyne Corporation’s Range Services Division (RSD)

builds and maintains the infrastructure necessary to conduct world class test and training

on the ETTC.

The purpose of this research is to create a scheduling tool for the RSD that

maximizes the number of prioritized jobs scheduled and reduces the man-hours required

to create a weekly schedule without exceeding a job’s deadline, manpower, or equipment

constraints. RSD’s schedule belongs to a class of scheduling problems called Resource

Constrained Project Scheduling Problems (RCPSP). RCPSPs attempt to schedule

activities of either a known (deterministic) or variable (stochastic) duration in a defined

sequence given a finite amount of resources. Many analytical methods have been created

to solve these types of scheduling problems. Analytical solution methods which

guarantee optimal solutions were not feasible due to the computational complexity of this

RCPSP. Instead, a greedy solution method is explored that uses a single-pass serial

scheduling algorithm.

A schedule construction algorithm is provided in the form of pseudo code to

enable further research and development of a scheduling tool for this RCPSP. Research

on a schedule improvement metaheuristic and coding of the complete algorithm is

required before it can be assimilated into existing scheduling software.

v

AFIT-IOA-ENS-09C-02

DEDICATION

To my loving and supportive wife and my very patient children.

vi

Acknowledgments

I'd like to extend my gratitude to the following individuals for their contributions to this

document and for the support they have given me during my time at AFIT. For my wife

who supports and inspires me through her love and through the drive and determination

she tackles every day with. To my children, who exhibit a patience beyond their years.

To my fellow students who both pushed me and at time pulled me through some of the

more difficult times at AFIT. To Dr. Chambal for his enthusiasm and assistance in

supporting our professional goals. To Dr. Moore for his guidance in the completion of

this research project. To all the individuals in the 46th Test Wing at Eglin AFB who

assisted my research. Special thanks to Lt Col Blatt, Mr. Heald, Mr. Burns, Mr.

Wesolowski, Mr. Hutto, and Mrs. Wagner.

Matt Liljenstolpe

vii

Table of Contents

 Page

Abstract ... iv

Dedication ...v

Acknowledgments... vi

List of Figures ... ix

List of Tables ..x

Chapter 1. Introduction ..1
 1.1. Background ...1
 1.2. Scope ...3
 1.3. Objectives ...3
 1.4. Range Support Scheduling Process ..4
 1.4.1. Purpose ..6
 1.4.2. Assumptions ..6
 1.4.3. Resources and Constraints ..6
 1.4.3.1. Range Time ..7
 1.4.3.2. Man-hours ..7
 1.4.3.3. Heavy Equipment...8
 1.4.4. Current Methodology ..9
 1.5. Preview ...10

Chapter 2. Literature Review ..11
 2.1. Resource-Constrained Project Scheduling Problems......................................11
 2.2. Scheduling Theory ..11
 2.3. Computational Complexity ...13
 2.4. Deterministic Methodology ..14
 2.4.1. Linear Programming ..14
 2.4.2. Enumeration ...16
 2.4.3. Constraint Programming ..16
 2.4.4. Heuristics. ..18
 2.5. Heuristic Methods ...19
 2.5.1. Greedy Algorithm ..19
 2.5.2. Priority List Scheduling ...19
 2.5.3. Schedule Generation Schemes ...20
 2.5.3.1. Serial vs. Parallel ...21
 2.5.3.2. Single Pass vs. Multi-Pass ...22
 2.5.4. Interchange Metaheuristics ..22
 2.5.4.1. Tabu Search ...23
 2.5.4.2. Simulated Annealing ..23

viii

 2.6. Summary ...24

Chapter 3. Methodology ...25
 3.1. Overview ...25
 3.2. Parameters and Variables ..26
 3.3. Assumptions ..29
 3.4. SPSS Routine ..29
 3.4.1. Prioritize Subroutine ..32
 3.4.2. Insertion Subroutine ...34
 3.4.3. Range Availability Test ...35
 3.4.4. Manpower Availability Test ..37
 3.4.5. Equipment Availability Test ..42
 3.5. Schedule Metrics ...43
 3.5.1. Objective Metrics ...44
 3.5.2. Improvement Metrics ...44
 3.6. Summary ...45

Chapter 4. Results and Analysis ...46
 4.1. Problem Sets ...46
 4.2. Example Problem ..47
 4.3. Analysis...51

Chapter 5. Conclusions and Recommendations ..52
 5.1. Conclusions ...52
 5.2. Recommendations for Further Work ..52

Appendix A. LIST OF ACRYNYMS ...54

Appendix B. InDyne Maximum Work Time Policy ...56

Appendix C. List of Resources ...57

Appendix D. Single-Pass Serial Scheduling Algorithm ...58

Appendix E. Blue Dart ..64

Bibliography ...67

Vita ..68

ix

List of Figures

 Page

Figure 2.1 MIP Formulation ...15
Figure 2.2 General CP Formulation ...17
Figure 3.1 Routine Hierarchy ...26
Figure 3.2 SPSS Routine Flow Chart ...29
Figure 3.3 Sample R(t) Matrix ..36
Figure 3.4 Sample M(t) Matrix ...39
Figure 3.5 CONR ..39
Figure 3.6 BOLR ..40
Figure 3.7 LOLR ...41
Figure 3.8 ROLR ..41
Figure 4.1 Example Arrays ...46
Figure 4.2 Sample Arrays ...46
Figure 4.3 Prioritize Subroutine ..47
Figure 4.4 Single-Pass Serial Routine (t = 1 “Monday”, n = 1, 2)48
Figure 4.5 Single-Pass Serial Routine (t = 1 “Monday”, n = 2)48
Figure 4.6 Single-Pass Serial Routine (t = 1 “Monday”, n = 7)49
Figure 4.7 Prioritize Subroutine (t = 2 “Tuesday”, n = 0) ..50

x

List of Tables

 Page

Table 3.1 Algorithm Assumptions .. 29

1

SINGLE-PASS SERIAL SCHEDULING HEURISTIC FOR EGLIN AFB RANGE
SERVICES DIVISION SCHEDULE

Chapter 1. Introduction

1.1. Background

 Headquarters Air Force Materiel Command (AFMC), at Wright-Patterson AFB

Ohio, is responsible for equipping the United States Air Forces (USAF) with warfighting

systems to dominate in the Air and Space domains. AFMC provides the personnel and

resources necessary to develop and sustain USAF weapon systems throughout their life

cycle. An integral aspect of AFMC’s mission is to conduct test and evaluation of USAF

weapons systems. The Air Armament Center (AAC) located at Eglin AFB Florida is

AFMC’s preeminent test site for that mission.

 The AAC is tasked with the development, acquisition, testing, and sustainment of

all air-deliverable weapons in the USAF inventory (Air, 2009). To enable this, the AAC

operates the Eglin Test and Training Complex (ETTC), the largest test range in the

United States consisting of 724 square miles of land area, over 134,000 square miles of

airspace, and more than 123,000 square miles of water ranges in the Gulf of Mexico

(Air). Ultimately, the 46th Test Wing (TW) is the AAC unit that provides the expertise

and infrastructure necessary to conduct world class test and training on the ETTC.

 Like many Department of Defense (DoD) organizations, the 46th Test Wing

contracts out certain functions of their mission. InDyne Inc. currently holds the contract

to provide management of the ETTC ranges. InDyne's mission is to support ongoing test

and training on the ETTC. Every type of ETTC user has unique requirements which

2

continually stress the resources of the 46th

InDyne’s RSD consists of six teams which employ over thirty workers with

varying specialties. The teams are organized by specialty and are named: Electricians

(E), Welders (W), Carpenters (C), Surveyors (S), Heavy Equipment Operators (H), and

Building Maintenance (B). The RSD has an overall division supervisor who manages the

master schedule of RSD resources, and each team has a designated team leader who

manages the team’s jobs and resources. Each year RSD accomplishes over six hundred

jobs on the ETTC (Burns, 2009). Scheduling RSD’s resources to complete those jobs is a

labor intensive and time consuming process. A multitude of dissimilar tasks, frequently

changing priorities, shifting work windows, and a limited supply of range time,

manpower, and mission critical equipment adds to the complexity of RSD’s scheduling

processes.

 TW. Ultimately, InDyne’s Range Support

Division (RSD) supplies the majority of the manpower and equipment required to support

user requirements. In fact, RSD is the most frequently tasked division of InDyne (Heald,

2009). Specifically, RSD is responsible for all general construction projects plus the

maintenance of dozens of facilities on the ETTC ranges.

RSD’s primary mission is to perform general construction and repair of range

assets on the ETTC. To that end, the RSD performs three services for the ETTC, and in

order of priority they are: Direct Mission Support (DMS), Range Construction (RC), and

Building Maintenance (BM). Jobs classified as DMS involve actions which fulfill

requirements for a specific user mission or set of related missions. DMS work usually

takes place immediately before or during actual execution of the mission(s). Examples of

3

DMS include placement and hardening of sensors or cameras, and assembly/disassembly

of targets that directly contribute to a mission’s execution.

RC projects include but are not limited to target construction, target repair, and

test stand construction. The construction and repair of range targets is a continual

process and is not usually tied to a particular mission. Although unique targets are

sometimes constructed for specific missions, the target and thus those jobs are classified

as RC unless they are otherwise tasked as DMS.

BM includes regular maintenance and repair of range facilities controlled and

operated by InDyne. BM jobs remain chronically unscheduled because they are

continually trumped by higher priority jobs. Subsequently, InDyne is experiencing an

increase in the failure of compliance inspections which negatively affect their award

bonuses. In order to maintain profitability and provide a high level of service in the long-

term, InDyne and consequently the RSD must increase its completion of BM jobs.

1.2. Scope

 The scope of this research is limited to the RSD scheduling process. This

research focuses on the scheduling of Manpower and Equipment within InDyne’s RSD

via Task Orders (TOs) and Internal Work Orders (IWOs) which are tasked outside of the

46th

1.3. Objectives

 TW’s DMS schedule.

 The objectives of this research are to improve the quality of the RSD schedule as

well as decrease the time required to create the initial schedule. Improving the schedule’s

quality entails maximizing the number of prioritized tasks scheduled within a given time

period without exceeding the job’s need date (deadline), range time, manpower, or

4

equipment constraints. Due to the dynamic and fluid nature of the ETTC mission, the

scheduling processes of the RSD follow a cyclical pattern of initial scheduling followed

by multiple changes which precipitates rescheduling. Quite often, even before the

finishing touches are applied to an initial schedule, unforeseen changes make that

schedule either difficult to execute or altogether invalid. Because these scheduling

changes can become cumbersome and time consuming, the second objective of this

research is to decrease the man-hours necessary to initially schedule RSD resources.

1.4. Range Support Division Scheduling Process

 Jobs are usually assigned to InDyne by a 46th

Jobs are also assigned to RSD via IWOs by other divisions of InDyne. This

usually happens when another division is tasked to support a job but lacks the personnel,

expertise or equipment required to complete a portion of the work. Therefore, IWOs are

usually assigned to RSD for one of two reasons: 1) an InDyne division is assigned a job

which requires RSD resources, or 2) an InDyne facility requires building maintenance.

 Test Wing Test Engineer (TE) in the

form of a TO. InDyne in turn assigns these TOs to their division responsible for the

majority of the work. The majority of the TOs received by InDyne are assigned to the

RSD. TOs assigned to the RSD typically involve the construction or repair of range

targets.

TOs and IWOs are formatted with the information required to complete each job

which include: work title, description of work, need date, and AAC priority number.

Each job has a unique AAC priority code. AAC priority codes are only used to break ties

when the simultaneous requirements of multiple jobs exceed available resources. AAC

priority codes range from one to a thousand with the lowest number receiving the highest

5

priority. Generally, jobs assigned to RSD have AAC priority codes in the hundreds and

above. Occasionally, RSD will receive a job with a priority code in the teens or single

digits; those jobs will receive whatever resources are required to complete them.

The RSD supervisor assesses new TOs and IWOs to determine an estimate of the

cost, manpower, equipment, and supplies required to complete the job. Once the RSD

supervisor determines the resources required for each job, he assigns management

responsibility of the job to one of RSD’s six teams based on which team is responsible

for the majority of the work. If resources from multiple RSD teams are required, the

supervisor will create additional intra-RSD IWOs which task one or more of the five

remaining teams to assist the team with the management responsibility. The team

assigned with management responsibility coordinates with the other tasked RSD teams to

complete the job. Therefore, the scheduling of team resources to specific RC and BM

jobs is not directly managed by the RSD supervisor.

The DMS schedule is produced by the 46th TW. As explained previously, jobs

associated with the DMS schedule are the RSD’s highest priority. On a weekly and daily

basis, the RSD supervisor schedules manpower and equipment to fulfill DMS jobs.

Additionally, the RSD supervisor schedules his resources to work on TOs or IWOs that

warrant special attention that day. If not tasked for DMS or the daily priority jobs, the

remaining RSD resources are freed to their respective team leads to be scheduled as

required to complete the highest priority TOs and IWOs within their purview. Therefore,

outside of DMS or other high priority jobs, the weekly RSD scheduling of resources is

delegated to team leads. This unwritten weekly RSD schedule of TOs and IWOs which

is produced following DMS tasking is the schedule of interest for this research.

6

1.4.1. Purpose

 The purpose of RSD's current scheduling process is to facilitate the completion of

all assigned TOs and IWOs prior to their due dates.

 1.4.2. Assumptions

 TOs and IWOs are the basic scheduling units. The amount of schedulable

units is primarily constrained by the deadline, range availability, available man-hours,

and heavy equipment. Range availability is a product of the 46th

 1.4.3. Resources and Constraints

 TW Operations Order.

RSD personnel are able to work on a site only when there are no ongoing missions. For

this reason, RSD personnel rarely have unlimited or uninhibited access to a job site.

Additionally, most of the job sites are at least one hour travel each way from Eglin (daily

starting/ending point). Therefore, RSD scheduling rules assume that each worker will be

productive no more than six hours per day. Although each job has unique material

requirements, the materials are purchased as they are needed and are therefore not

considered as constraining in this study. Finally, preemption is allowed in the schedule.

It is unusual for other than minor jobs to be completed without preemption.

 The number of jobs RSD is able to complete each week is constrained by

available range time, man-hours, and heavy equipment. The job deadlines are an

important constraint in the scheduling process but are defined by the customer,

independent of each other, and not a function of RSD’s scheduling process. If it is

determined that a deadline will not be met, the RSD supervisor will contact both the

customer and the 46th

 TW to request an extension, although this rarely happens.

7

 1.4.3.1. Range Time

 There are over three dozen range sites on the ETTC. RSD must have exclusive

use of a range (work site) in order to accomplish required work. RSD does not usually

have priority use of ranges for which they must accomplish work. Instead, they must

wait for everyone else to make their requests. They are forced to find work on ranges

they can gain access to on any given day; therefore, they must remain flexible. Every

week, the 46th TW schedules range times according to user requests and 46th

 RSD’s team leaders and supervisor attempt to maximize the amount of time they

are active in productive work. Therefore, they attempt to limit the amount of travel time

to and from work sights (ranges). In that respect, the team leaders will not schedule a job

at a worksite where they are not able to get at least four hours of work done, assuming the

job requires at least four hours of work.

 TW needs.

Within that schedule, RSD is assigned to support ongoing missions at various times

before, during, and after the mission time. It is RSD’s primary mission to accomplish

these jobs.

1.4.3.2. Man-hours

 The current number of workers on each of RSD’s six teams are: Electricians

(eight), Carpenters (six), Surveyors (four), Welders (four), Heavy Equipment Operators

(eight), and Building Maintenance (five). Workers are rarely scheduled to work alone.

For safety reasons, a minimum of two workers from a team are scheduled to each job.

The workers are also very versatile in that they can work outside their team. For

example, an electrician may assist a carpenter when there is no electrical work to be

done.

8

 RSD personnel work a straight work schedule with no scheduled breaks. The

baseline schedule for each worker consists of nine hour work days Mondays through

Thursdays with an eight hour work day on Fridays. Every worker has Saturdays and

Sundays off as well as every other Friday off. Fifty percent of the workforce alternates

Fridays off every week. Although overtime is discouraged unless mission essential, the

RSD supervisor is allowed to schedule workers up to a maximum of twelve hours per day

and sixty hours per week. The InDyne General Manager must approve scheduling

workers in excess of those amounts. If need be, workers can be scheduled up to sixteen

hours per day and seventy-two hours per week. It is InDyne’s policy to allow a minimum

of eight hours off between shifts. On special occasions, RSD will work on Saturday

and/or Sunday to complete a project. See Appendix B for InDyne's maximum work time

policy.

 1.4.3.3. Heavy Equipment

 RSD manages and operates government owned heavy equipment for use on their

construction and maintenance missions (see Appendix D. List of Resources.) Some

pieces of heavy equipment require specific pieces of other multi-use equipment for

transportation or operation, and therefore must be scheduled together. For example,

cranes and bulldozers usually require transportation to a job site on a trailer which must

be pulled by a tractor. Although the type and number of these resources is finite, RSD

does have the ability to temporarily rent extra or specialized equipment as needed.

Additionally, there are instances when certain jobs are either too cumbersome or too

technical for the RSD to accomplish indigenously. In those instances, RSD will

9

subcontract the job out to a company that is better equipped or capacitated to accomplish

the task.

 1.4.4. Current Methodology

The scheduling process begins when the weekly DMS schedule is received by the

RSD supervisor. A tentative schedule of DMS tasks is published each Thursday by the

46th

As each daily schedule is produced at the end of the previous day, the RSD

supervisor allocated RSD resources from each of the six teams to fulfill DMS jobs that

are tasked via the Op Ord. Additionally, the RSD supervisor schedules RSD resources

for high priority RC or BM jobs. The list of high priority RC or BM jobs change daily.

Often, items are added to this list based on external inputs from the 46

 TW. From this, a tentative RSD schedule for the following week is produced. This

schedule is updated three days prior to the day of execution. The actual execution

schedule is created with the release of the AAC Operations Order (OP ORD) which is

released one day prior to the day of execution. Following the construct above, an initial

weekly schedule for the RSD is produced by the supervisor no later than the preceding

Friday from which a daily schedule is created one day prior to the day of execution.

th

After all necessary resources are allocated to support DMS and high priority TOs

and IWOs, the remaining resources are released to individual RSD team leads to utilize

according to their priorities. Each remaining TO and IWO has unique requirements in

terms of range, manpower, equipment required, and precedence. For instance, one job

 TW, from

InDyne leadership, or from Range Safety. For example, any time a warning light burns

out on a tower, for safety purposes the job of replacing the bulb automatically becomes a

high priority job.

10

may require that surveyors mark a job site before another job with heavy equipment

operators can construct a target. All of the coordination required to accomplish TOs and

IWOs are handled at the team leader level with overall management of resources handled

at the RSD supervisory level.

Jobs are scheduled based on scheduling priority and customers need date. As

previously stated, DMS jobs have the highest priority. All remaining RC and BM jobs

associated with active TOs and IWOs are processed according to need date. When

resources are constrained, ties for jobs with matching priority and/or need date are broken

with the AAC priority code.

1.5. Preview

 The remaining chapters contain a detailed explanation of the research project’s

methodology and conclusions. Chapter 2 describes the literature reviewed during the

project. In Chapter 3, the research assumptions, scheduling rules, and constraints are

defined. It also contains a detailed description of the methodology used to generate

feasible solutions. Results and analysis are presented in Chapter 4. Finally, Chapter 5

lists the conclusions and recommendations of the research project.

11

Chapter 2. Literature Review

2.1. Resource Constrained Project Scheduling Problems

 The purpose of this research is to create a scheduling tool for a Resource

Constrained Project Scheduling Problem (RCPSP). RCPSP’s are a class of scheduling

problems that attempt to schedule activities of either a known (deterministic) or variable

(stochastic) duration in a defined sequence given a finite amount of resources. RCPSP

can formally be defined as a combinatorial optimization problem (Artigues, 2008: 21).

Typically, the length or “span” of a schedule is optimized, more specifically minimized,

such that resource and precedence constraints are adhered to. This research focuses on

deterministic RCPSPs with precedence constraints where preemption is allowed.

Multiple methods have been developed to solve such problems.

 The next section of this chapter provide information on some basic concepts in

scheduling theory. A discussion of computational complexity is included to explain the

applicability of different approaches described later in the chapter. The algorithm created

during this research applies the greedy principles and is a heuristic technique for solving

a RCPSP. Alternative methodologies are discussed in order to cover other solution

methods investigated during this research. Finally, in order to provide a theoretical basis

for later chapters, an explanation of the heuristic approach used to create the scheduling

algorithm of this research is presented at the end of the chapter.

2.2. Scheduling Theory

 Project scheduling is a decision making process that is commonly found in all

types of organizations both large and small, from private industry to government.

Although scope and objectives change, the problem still lies in how to schedule activities

12

given technological constraints. Technological constraints are typically either precedence

or resource related. Activities and constraints can take on many forms, from the typical

job shop with a single machine, one type of resource, and one product; to a group of

specialized workers with disparate tasks and multiple resources. Many analytical

methods have been created to solve the range of possible problems.

Broadly stated, there are three common analytical methodologies used to model a

scheduling process: linear programming, enumeration, and heuristic techniques. Whereas

linear programming and some enumerative solution methods are used to find optimal

solutions, should one exist, many enumerative and heuristic approaches are used to

quickly find better solutions to problems that would have otherwise been found without

applying any analytical technique at all. Project scheduling problems or “instances” are

generally classified by the following taxonomy:

n/m/A/B where:

n ≡ Number of jobs to schedule.

m ≡ Number of machines to process the jobs.

A ≡ Flow pattern within the job shop.

B ≡ Performance objective of the schedule (e.g. minimize the lateness of job

 completion times).

For example, n/2/O/Lmax

 Furthermore, each RCPSP is further defined by the inter-relationship of its

activities, durations, precedence relations, resources, and demands (Artigues: 22). All

possible feasible solutions obtained through the combination of these attributes define the

 would denote a schedule for an n job, 2 machine, open job shop

where the objective is to minimize maximum lateness.

13

solution space from which the schedule is ultimately created. Additional attributes of a

schedule may include task due dates and preemption. Preemption is a scheduling rule

that permits jobs to be paused once begun to allow for the start of another job.

Preemption and deadlines increase both the solution space and complexity of finding an

optimal solution via any method, as is the case in this study.

2.3. Computational Complexity

 The computational complexity of a problem is defined as the difficulty of finding

a optimal solution given a particular solution technique. As stated by Parker and Rardin,

“…complexity seeks to classify problems in terms of the mathematical order of the

computational resources required to solve the problems via digital computer algorithms.”

(1982). Problems are divided between two general categories of complexity, those that

have algorithms that can be solved to optimality in Polynomial time (P) and those that

lack such algorithms which are called Non-deterministic Polynomial (NP). Examples of

problems with polynomial time algorithms include most assignment, covering, and

simple linear programming problems, to name a few. If the problem is of small to

moderate size, these algorithms can be solved to optimality in a sensible amount of time

on digital computers because their algorithms have been proven to solve to optimality in

polynomial time. If a class of problems is considered NP, there exists no algorithm

which will either solve for feasibility (decision problem) or check optimality (recognition

problem) of the problem in Polynomial time; rather the worst-case time required to solve

these problems to optimality is more closely approximated by some exponential function,

meaning the solution time required to find an optimal solution increases exponentially as

the number of variables increase (French, 1982: 146). For example a particular algorithm

14

may solve a P class problem with thirty variables in .00003 seconds on a digital

computer, while an NP class algorithm for a different problem of the same size (thirty

variables) would take 8.4 x 1016

As shown above, it is important to understand the practical types of solution

methods that exist for a particular scheduling problem. As far as RCPSPs are concerned,

many instances belong to a sub-class of NP called NP-hard or NP-complete. These types

of problems are very hard to solve to optimality and tend to lend themselves to heuristic

methods, which find feasible solutions in a more reasonable amount of time, although

they often sacrifice optimality to do so. The RCPSP of this research is characterized as

Om//L

 centuries to find an optimal solution on that same

computer (French: 141). Furthermore the same NP problem may take only 3.6 seconds to

solve to optimality when only ten variables are used instead of thirty.

max

2.4. Deterministic Methodology

, which is an open job shop with m separate machines that has an objective to

minimize maximum lateness. Mathematically, that particular type of problem is

classified as strongly NP-Hard (Pinedo, 2008: 605).

 Solutions to RCPSPs are found a number of ways. Four commonly used solution

techniques are linear programming, enumeration, constraint programming, and heuristic

algorithms.

2.4.1. Linear Programming

 Linear Programming (LP) algorithms are a class of solution techniques that find

optimal solutions to various scheduling problems. As its name suggests, LP algorithms

are comprised of a series of equations of linear combinations of decision variables.

Methods include traditional Linear Programming (LP) where decision variables belong to

15

the set of real numbers, Integer Programming (IP) techniques where decision variables

are restricted to integer values, Mixed Integer Programming (MIP) where some decision

variables are continuous and the rest are integer, and binary decision variables where

decision variables are limited to the values 0-1. Figure 2.1 shows the classic formulation

of a MIP with all three types of variables.

 [2.4.1]

 [2.4.2]

 [2.4.3]

 [2.4.4]

 [2.4.5]

Figure 2.1 MIP Formulation

Figure 2.1 depicts the typical format of a LP with a single objective function [2.4.1] and

constraint equations [2.4.2] through [2.4.5]. The objective function is a linear

combination of the decision variables multiplied by some type of cost coefficient and the

objective will seek to either maximize or minimize its value. Each of the "i" constraint

equations would represent a single precedence or resource constraint [2.4.2], or set limits

on the value of the decision variables [2.4.3] through [2.4.5]. Each resource or

precedence constraint can be either an equality, upper, or lower bound (bi

1

1

1 1

 z =

 to:

0 and integer for j = 1,...,p

0 for j = p+1,...,n-1

0
 for j = n

1

n

j j
j

p n

ij j ij j ij j i
j j p j n

j

j

j

Max c x

subject

a x a x a x b

x
x

x

=

−

= = + =

= 
 + + ≤ 
 ≥ 

≥

≥


= 


∑

∑ ∑ ∑

) as indicated

by the column vector in equation [2.4.2].

16

 LP algorithms will find an optimal solution if one exists. Quite often, LP

formulations are used to solve simple problems with limited variables or simplified

versions of more complex problems. In practice, too much fidelity may be lost by over

simplifying a complex problem. Therefore, other solution techniques are often utilized to

solve complex RCPSPs in order to avoid the solution times of NP algorithms described in

the previous section.

 2.4.2. Enumeration

 Enumerative techniques are sometimes used to solve RCPSPs when it is

determined that the LP formulation is either too complex to simplify or will take too

much processing time to solve (NP). Enumeration algorithms are either explicit or

implicit. An explicit enumeration algorithm solves for every possible combination of the

decision variables. For each solution, the algorithm compares the objective function

value to the reigning best solution in order to find the optimal solution once all possible

solutions have been investigated. Usually, if a problem takes too much processing time

to solve with some version of an LP formulation, then it will also take too much time to

solve via explicit enumeration. Therefore, more eloquent algorithms have been

discovered which solve only a portion of the total solution space, otherwise known as

implicit enumeration. Some examples of implicit enumeration are branch-and-bound and

branch-and-cut. Each of these techniques uses similar rules to logically explore or

eliminate portions of the solution space, thus requiring only a fraction of the computing

time required for explicit enumeration. Although this approach is applied to more

complex problems than LP, IP, MIP, or explicit enumeration methods, it does not

guarantee optimality of the solution like those methods (Murty, 1995: 363).

17

 2.4.3. Constraint Programming (Pinedo, 2008)

 Constraint Programming (CP) is similar to LP methods in that logical constraints

are used to define relationships between decision variables. CP does not solve to

optimality through the use of strict mathematical equations like LP methods; rather, it

seeks to vary decision variables in accordance with a logically based process in order to

produce a feasible solution. Whereas constraints in mathematical formulations are either

linear or non-linear, constraints in a CP formulation can be more general in form.

Examples of constraints may include logical, linear, non-linear, cardinality, or global

constraints. Another significant difference between mathematical and CP formulations is

that CP does not have to use an objective function; rather, a CP algorithm's objective is to

just find a feasible combination of decision variables. Intelligent designs can reduce the

number of permutations to run before an acceptable solution is reached. (Pinedo, 2008:

582) Figure 2.2 shows an example of a high order CP.

Figure 2.2 General CP Formulation (Pinedo: 582)

 CP algorithms search through the solution space in a manner similar to that of

branch-and-bound techniques. Each branch terminates at a node which represents an

assignment of one variable, from which another bound can be made or not. At each

While not solved AND not infeasible DO
 consistency checking (domain reduction)
 IF a dead-end is detected THEN
 try to escape from dead-end (backtrack)
 ELSE
 select variable
 assign value to variable
 ENDIF
ENDWHILE

18

node, the combination of variables are tested for feasibility. If the combination of

variables is deemed infeasible, then the algorithm follows "backtrack" rules which move

out of the infeasible region and into a feasible one. Once all variables have been assigned

a feasible value, the resulting schedule is compared to some threshold metric. If the

schedule meets or exceeds that metric, then the schedule is complete. Additional CP

methodologies can be used to seek improvements to the schedule. (Pinedo, 2008: 587)

 2.4.4. Heuristics (French, 1982)

 Heuristic methods should not be used if one of the optimal solution methods

discussed previously is computationally feasible (French, 1982: 156). That being said,

heuristic approaches to scheduling problems are widely used throughout industry. The

reason being that real world industrial problems usually involve a complex set of

scheduling rules that are difficult to code mathematically, not to mention the processing

time required to solve these problems once those rules are coded. Heuristic

methodologies seek to "...use our knowledge and experience to find a schedule which, if

not optimal, may at least be expected to perform better than average", and do it in a

reasonable amount of time (French, 1982: 155). In much the same way CP approaches

use constraints to enable searches for feasible solutions, heuristic approaches use

scheduling rules to build a feasible schedule. These rules can be formulated as logical

constraints, mathematical expressions, or even mini-LP subroutines. Heuristic techniques

are not tied to one methodology; rather, they are a collection of scheduling rules used to

create schedules otherwise built by hand. The rest of this chapter covers general heuristic

scheduling approaches as well as detailing methods utilized in this study.

19

2.5. Heuristic Methods

 Some heuristic methodologies are generically applicable to in a broad range of

scheduling problems. Conversely, some algorithms are applicable for only specific cases.

For this study, a general schedule generation technique was applied. The process used to

create the heuristic scheduling algorithm for this study is comprised of two parts: creation

of a priority list and the application of a scheduling scheme to the priority list. Although

not used in this study, it is not uncommon to attempt to make a schedule better by

applying metaheuristic improvement algorithms to a feasible schedule after it is created.

 2.5.1. Greedy Algorithm

 The heuristic approach used in this research applies greedy principles. A solution

method is said to be a greedy method if it has the following features: incremental, no-

backtracking, and greedy selection (Murty, 1995: 414). An incremental solution method

is one that is created from a subset of elements in which the algorithm sequences through

the subset until a complete solution is reached. No-backtracking refers to the manner in

which decisions about the solution set are made. A heuristic method with a no-

backtracking feature does not revise a decision once it is made, whether it be inclusion of

an element to the solution set or not. The greedy selection feature implies that the best

available element from a selectable set is used for the next stage in the process. The

criterion for selecting the best element is problem specific but may include attributes such

as least cost, highest profit per unit, or some other user defined priority scheme.

2.5.2. Priority List Scheduling

Priority list scheduling is the most commonly used technique in industry because

it is intuitive to understand and implement. Additionally, it is employed in many

20

commercial scheduling packages because they are computationally efficient (Kolisch,

1996). Priority lists can be thought of as a prioritized list of activities used as input for a

schedule generator. In relation to the three greedy features covered in the previous

section, priority lists are commonly used as the engine for the greedy selection feature.

Priority lists are created by prioritizing a list of events using dispatching rules.

Dispatching rules can be either static or dynamic (Pinedo, 2008: 372). Dynamic rules are

time dependent while static rules are not. An example of a dynamic dispatching rule is

minimum slack. Minimum slack (MS) is the difference between the time an event is due

and the current time plus the remaining event processing time. Thus, as time progresses,

an event's minimum slack decreases, which may alter its position on a priority list. Other

examples of dispatching rules are First Come First Serve (FCFS), Service in Random

Order (SRO), and Shortest Processing Time. Yang studied common dispatching rules

used for both deterministic and stochastic processes. Yang found that five dispatching

rules are statistically better at producing the shortest mean project completion times, the

most number of shortest project completion times and the least number of longest project

completion times when applied to a variety of scheduling instances (Yang, 1998). Two

of these rules, Minimum Slack and Greatest Cumulative Resource Requirement (GCRR)

are used in the algorithm produced during this study. Once a priority list is created, a

schedule generation scheme is used to create the first instance of the schedule.

2.5.3. Schedule Generation Schemes

Two of the oldest and most widely used heuristics for the RCPSP are the serial

and parallel generating schemes (Kolisch, 1982).

21

 2.5.3.1. Serial vs. Parallel (Kolisch, 1982)

Serial scheduling schemes select and schedule one activity at a time. In this

scheme, a single event is selected from the set of un-scheduled events that belong to a

Decision set (D). After the event is scheduled, it is placed in the set of scheduled events

(S). This in turn may bring more events into the decision set if the event just scheduled is

a predecessor of those events. This process is repeated until all events are placed in S.

Parallel scheduling schemes are similar in that only one event is scheduled at any

one time. One event is selected from the decision set in accordance with the same

dispatching rules as well. When scheduled, events are added to the Active set (A),

meaning they have been scheduled but are not completed by the current scheduling time.

As the current schedule time is advanced, events that reach completion are placed in the

Completed set (C). Current schedule time is advanced to the earliest completion time of

all activities in A.

Kolisch's study of serial and parallel scheduling schemes concluded that the serial

scheme performs better when applied to large problems or when resources are only

moderately constrained (1982). Additionally, it was proven that serial schemes produce

active schedules while parallel schemes produce only non-delay schedules. In an active

schedule, events cannot be scheduled any earlier without violating technological

constraints, which is referred to as a left-shifted schedule. Non-delay schedules sequence

activities such that no machine is kept idle when there is an event it could start processing

(French, 2008: 157). The significant difference between active and non-delay schedules

is that the solution space for an active schedule will contain the optimum schedule while

a non-delay schedule may not.

22

 2.5.3.2. Single Pass vs. Multi-Pass

Both serial and parallel methods can be applied in either a single or in multiple

passes. The single pass heuristic is described above. A multi-pass heuristic iteratively

applies either a serial or parallel scheduling scheme, each time altering the dispatch rule

used. Each time a pass is completed it creates a feasible schedule which is compared to

existing feasible schedules of which the best one is selected (Kolisch, 1982). Another

variant of the multi-pass approach is called the forward-backward pass heuristic. The

forward pass applies a serial scheme thereby producing an active schedule (left shifted),

then the backward pass solves for the mirror problem thereby producing a right shifted

schedule. In this manner, the heuristic repeats these iterative steps until no improvements

can be made from one shift to the next (Artigues, 2008: 91).

2.5.4. Interchange Metaheuristics (Pinedo: 378)

Interchange metaheuristics are an improvement technique that is applied to

schedules once they have been built using methods just discussed. The two methods

described in the following sections are called local search procedures. Local search

procedures do not guarantee an optimal solution. Rather, they seek to find a better

schedule through alteration of the current one (base schedule). The base schedule is

modified by some sort of predefined process, usually a pair-wise interchange of two or

more events within the schedule. A "neighbor" schedule is created once an altered

schedule is proven feasible. Each neighbor created from the base schedule is compared

to some predefined metric or acceptance/rejection criteria. The best neighbor is selected

as the new "base" schedule and the process is repeated until it reaches its termination

criteria (Pinedo, 2008: 378). The difference between methods lies in the manner in which

23

new neighbors are created, accepted, and the criteria used to end the metaheuristic

process. Below is a description of two common techniques called tabu search and

simulated annealing.

 2.5.4.1. Tabu Search

In tabu search, deterministic rules are used to approve new neighbors. As the

algorithm progresses through a solution space, or tree, a tabu list is kept which stores past

interchanges in their reverse sequence. Tabu lists can vary in length, usually storing no

more than five to nine reverse interchanges at any one time. The algorithm prohibits

returning to previous solutions through the use of the tabu list. The goal of the algorithm

is to search for the best solution while avoiding local minimum. The tabu search will use

a deterministic procedure to select the new base schedule from its neighbors, which may

actually be a worse solution than the current best. In this way, the algorithm attempts to

back out of local minimum in order to find a better solution later on in the search (Pinedo,

2008: 384).

 2.5.4.2. Simulated Annealing

 Simulated annealing is similar to a tabu list algorithm, but instead it uses

stochastic methods to approve new base schedules from within a neighborhood.

Typically, a selection probability will be assigned to each neighbor in the neighborhood.

The worst neighbors will be assigned lower probabilities of selection as the algorithm

progresses. In turn, by assigning progressively better probabilities to better solutions, the

algorithm will tend to back out of and local minimums early in the process and hone in

on better schedules later in the process (Pinedo: 380).

24

2.6. Summary

 The Resource Constrained Project Scheduling Problem (RCPSP) tends to be

difficult to mathematically solve to optimality. Even problems of moderate size and

dimension can take an exorbitant amount of time to solve using analytical techniques

such as linear programming. Subsequently, alternate methods are often used to create

feasible schedules for many RCPSPs. Some alternate methodologies like Branch-and-

Cut may still find optimal or nearly optimal solutions by implicitly enumerating the

possible solution space of the problem. In large industrial applications though, even

these types of methods can prove to be intractable. Heuristic algorithms are an alternate

methodology which will quickly find good and sometimes optimal solutions to

complicated RCPSPs.

 Greedy heuristic methods that use either a serial or a parallel schedule generating

scheme are two commonly used methods to solve difficult RCPSPs. Heuristic

approaches are easy to conceptualize and adapt to industrial applications; therefore, they

are found in many industrial software packages. Much research has been devoted to

creating heuristic algorithms that solve different types of RCPSPs. Both constructive

algorithms, like serial or parallel, and improvement algorithms, like tabu search or

simulated annealing, can be adapted and applied to almost any kind of problem.

25

Chapter 3. Methodology

3.1. Overview

 This chapter outlines how the heuristic methods discussed in Chapter 2 are

applied to the RCPSP described in Chapter 1. In this study, a greedy heuristic method is

used to generate a schedule for a RCPSP. The heuristic creates a prioritized list which is

used to serially schedule jobs in a single pass. This heuristic will be referred to as a

Single-Pass Serial Schedule (SPSS) algorithm throughout the rest of this paper. A

detailed explanation of the SPSS algorithm used to generate a feasible schedule is

provided. In section 3.2, the algorithm's parameters and variables are defined. Section

3.3 lists the assumptions made to simplify the problem enough to enable the creation of a

workable algorithm. The next seven sections break up the code into logical segments to

facilitate a more detailed explanation of the algorithm's processes. These sections are

titled: SPSS routine, prioritize subroutine, insertion subroutine, range test, manpower test,

equipment test, and metric subroutine. The SPSS routine is the top-level routine which

calls on both the prioritize, insertion, and metric subroutines. The range, manpower, and

equipment tests are all contained within the insertion subroutine. Figure 3.1 depicts the

hierarchy of the (sub)routines in addition to the input and output of each (sub)routine/test.

Appendix D lists the full algorithm start to finish.

26

Figure 3.1 Routine Hierarchy

3.2. Parameters and Variables

 The first step in outlining any analytical approach to problem solving is to define

the parameters and decision variables used. The parameters used in this algorithm are

related to time or are functions of time. "t", defined on line [3.2.1], represents the

current scheduling day. WW on line [3.2.2] is a user defined parameter which allows

decision makers the flexibility to alter the search parameters within the scheduling

algorithm to reflect the week’s work schedule.

t ≡ Current scheduling day (MM:DD:YYYY), t ∈ {(1:1:2009), (1:2:2009),...} [3.2.1]
to ≡ First day of the scheduled week (Monday)
WW ≡ Work Week, 2x5 matrix of starting (SW(t)) and ending (EW(t)) times for [3.2.2]
 schedulable work during day t for the weekly schedule

The example WW matrix below shows a 5 day work week for SW(t) = 0700 and EW(t) =

1500 for the first four days (t = 1, 2, 3, 4); and for the fifth day SW(5) = 0700 and EW(5)

= 1400. Each number represents a sixty minute period (eg. “7” = 0700:00 to 0759:59).

For example, eight hours are spanned between SW(5) and EW(5) (0700 to 1459), which

is a typical Friday work schedule.

27

WW =
7 7 7 7 7

15 15 15 15 14
 
 
 

 The following definitions of the decision variables are largely self explanatory.

Set notation is used throughout the algorithm. Arrays and matrices are used when

appropriate to store and manipulate related data.

Kr(t) ≡ Array of available resources for each day t, r ∈ {R, M, E} [3.2.3]
 R(t) ≡ Matrix of range availability per period for each "SITE" and day "t"
 M(t) ≡ Matrix of man-hours available per period for each "TYPE" and day "t"
 E(t) ≡ Array of heavy equipment available for day (t)

A(t) ≡ Active Set of arrays aj for each job j in a scheduling day t, j ∈ {1, 2, 3,…, J}[3.2.4]
 aj ≡ (SWN, SITE, PRI, MH, WPH, TYPE, (EQP), PRED, SUC, DL, MS)
 SWNj ≡ Service Request or Work Order Number of job j
 SITEj ≡ Work site identifier, ∈ {of all ranges}
 PRIj ≡ Priority number, ∈ {1, 2, 3}
 MHj ≡ Man Hours required for job j, ∈ {0, 1, 2, 3,...}
 WPHj ≡ Workers Per Hour required for job j, ∈ {1, 2, 3,...}
 TYPEj ≡ Type of worker required for job j, ∈ {B, C, E, H, S, W}
 B = Building Maintenance; C = Carpenter; E = Electrician;
 H = Heavy Equipment Operator; S = Surveyor; W = Welder
 (EQP)j ≡ Array of Heavy Equipment required for job j, (see Appendix C.)
 PREDj ≡ Job that must be completed prior to the start of job j (Predecessor)
 SUCj ≡ Job that can only start once job j is completed (Successor)
 DLj ≡ Dead Line of job j, ∈ {(MM:DD:YYYY)}
 MSj ≡ Minimum Slack of job j; MSj ≡ DLj - (t + TPTj) [3.2.5]
 TPTj ≡ Total Processing Time ≡ MHj + ∑MH of all Successors of job j

P(t) ≡ Prioritized, set of arrays pj (sorted elements of A(t)); pj ← ai, ∀ i, j [3.2.6]

D(t) ≡ Decision, set of arrays dj of schedulable jobs from P(t); dj ← pj, ∀ j [3.2.7]

S(t) ≡ Scheduled, set of arrays sj of scheduled jobs [3.2.8]
 sj ≡ (SWN, SITE, TYPE, WPH, (EQP), START, END)
 STARTj = Start time of work for job j; ENDj = End time of work for job j

WTj = MHj/WPHj; Work Time, hours required at SITEj to complete job j, ∈ [3.2.9]

Of note, sets A, P, D, and S above are used repetitively within and between days

to facilitate a SPSS generation scheme. The set of all scheduled jobs for each day, S(t)

28

on line [3.2.8], contains all the scheduled jobs on a particular day in array format. The

cumulative elements of this set, for each of the five days, is the end product (schedule) of

the algorithm.

 Line [3.2.5] is the minimum slack of job j. Minimum slack was covered in

Chapter 2 as a key dispatching rule. MS is a function of a jobs Dead Line (DL), the

current scheduling day (t) and the Total Processing Time (TPT). The TPT of job j is

calculated by adding the remaining man-hours required for job j plus the summation of

the man-hours of all the successors of job j. TPT is analogous to the Greatest Cumulative

Resource Requirement (GCRR), also discussed in Chapter 2.

 Work Time (WT) [3.2.9] is the time required on a particular job site. For

example, if a job requires twenty man-hours of electrician work to be done by two

electricians, then WT = MH 20 10 hours on site.
WPH 2

= =

29

3.3. Assumptions

 The RSD schedule is difficult to solve to optimality. Table 3.1 lists the

assumptions that are made about the original process to make it easier to model within

the context of the SPSS algorithm.

Table 3.1 Algorithm Assumptions

3.4. Single-Pass Serial Scheduling Routine

Figure 3.2 SPSS Routine Flow Chart

Figure 3.2 displays how jobs flow through the SPSS routine, which is covered in

the following sections. The algorithm is written in pseudo code. To facilitate

explanation of the algorithm's processes, the code is broken up into smaller segments

throughout this and the next six sections. The SPSS routine is outlined in this section.

30

 Single-Pass Serial Scheduling Routine
 START
 n = 0 [3.4.1]
 t = to [3.4.2]
 A(t) = P(t) = D(t) = S(t) = ∅ [3.4.3]
 RUN Prioritize Subroutine [3.4.4]

The first step in the top-level routine initializes "n" to zero [3.4.1]. "n" is used

throughout the code to logically increment through each job "j" as the algorithm

schedules within a day "t" (incremental feature of greedy methods). "t" is initialized to

the first day of the scheduled week on line [3.4.2]. "t" is used as a counter to ensure the

algorithm runs through the routine five times (i.e. an entire five-day work week). Line

[3.4.3] initializes all of the sets to the empty set (∅). The operations of the Prioritize

subroutine on line [3.4.4] are covered in the next section.

 WHILE t ≤ (to + 5 days) DO [3.4.5]
 BEGIN
 WHILE n ≤ J DO [3.4.6]
 BEGIN
 IF dn ∈ D(t) THEN [3.4.7]
 RUN Insertion Subroutine
 ENDIF
 n = n + 1 [3.4.8]
 D(t) ⃪ {pn | “PREDn” = 0 OR “PREDn” = “SWNi” with “MHi” = 0}; [3.4.9]
 ∀ i, i ∈ {1, 2, 3, …,J}, i ≠ n, dn ⃪ pn
 P(t) ≡ {pj | “SWNj” ∉ D(t)}, ∀ j [3.4.10]
 END WHILE

The outer WHILE loop on line [3.4.5] sequentially steps through each day "t" of the

scheduling week. The inner WHILE loop [3.4.6] sequences through each job j currently

in the set P(t) for the current day t. Line [3.4.7] determines if the current job is a member

of the decision set, D(t). On the first pass through this IF statement, "n" will equal zero

and D(t) will equal the empty set (∅); therefore the IF statement will be FALSE. On

subsequent passes, line [3.4.7] will determine if prior passes through the inner WHILE

31

loop have placed the nth job of the prioritized set P(t) in the decision set D(t). Keep in

mind that D(t) is the set of schedulable jobs. If this IF statement is TRUE, then the

algorithm will run the insertion routine which will attempt to find a valid time for the nth

job in day t, given available resources. The Insertion subroutine is covered in Section

3.4.2. After the insertion routine, "n" is incremented to the next job number on line

[3.4.8]. Line [3.4.9] updates the decision set D(t) with the nth job of the priority set P(t) if

that job has no predecessor (PRED = 0) or if the nth job has a predecessor with "MH" = 0

(i.e. predecessor job has been completely scheduled.) "dn ⃪ pn", on line [3.4.9], indicates

the elements of the array pn will map to dn if these conditions are true. Line [3.4.10] is

the last line of code in the inner WHILE loop. Its function is to update the priority set

with all elements currently in P(t) that are not also a member of the decision set D(t).

This operation will remove the nth array from the priority set P(t) if it is currently in the

decision set D(t) because it met one of the conditions of the prior operation [3.4.9]. This

inner WHILE loop will continue until all the jobs have been sequenced through it (n = J)

and is terminated when n = J + 1.

 n = 0
 t = t + (1 day) [3.4.11]
 A(t) ⃪ P(t-1) ∪ {dj ∈ D(t-1) | “MHj” > 0}, ∀ j, aj ⃪ pj, aj ⃪ dj [3.4.12]
 RUN Prioritize Subroutine [3.4.13]
 D(t) ⃪ {pj ∈ P(t) | “SWNj” = “SWNi” of di ∈ D(t-1)}, ∀ i, j [3.4.14]
 P(t) ≡ {pj | “SWNj” ∉ D(t)}, ∀ j [3.4.15]
 END WHILE
 Metrics Subroutine
 STOP

Following completion of the inner WHILE loop the algorithm reinitializes "n" and

increments "t" for the next day of scheduling on line [3.4.11]. Before the end of the

SPSS routine, the algorithm does four additional operations to prepare itself for the next

32

increment (next scheduling day). First, on line [3.4.12], it initializes the current days

active set A(t) with the prior days priority set P(t-1) plus any elements of the prior days

decision set D(t-1) that have not been completely scheduled. In this way, the algorithm

places all remaining unscheduled or unfinished jobs in the next day's active set A(t).

Then line [3.4.13] reruns the Prioritize subroutine which creates a new priority set P(t)

from A(t). The operation on line [3.4.14] places all elements of the prior days decision

set D(t-1) into the new decision set D(t) that were not completely scheduled the day prior.

This is done so that the recursive operations contained in the inner WHILE loop can be

reused each schedule day without creating new logic to populate the new decision set

D(t). Finally, line [3.4.15] erases arrays from P(t) that were just mapped to D(t) exactly

the same way it was done on line [3.4.10] earlier. The next five sections cover in more

detail the operations of the prioritize, insertion, and metric subroutines.

 3.4.1. Prioritize Subroutine

 The prioritize subroutine creates the priority set P(t) from the active set A(t). The

priority set is a set of all schedulable arrays listed in order of the priority rules discussed

below. This priority list is the greedy selection feature of this algorithm in that it enables

the insertion subroutine to select the best available job as the next scheduling candidate.

The first operation the prioritize subroutine performs (line [3.4.16]) is to build the set

A(t), which is a set of arrays of all active jobs to be scheduled within the RSD for the

week. This process was not explicitly modeled in this study. The number of jobs in the

active set (J) is then calculated by setting J equal to the cardinality of the active set, |A(t)|.

The prioritize subroutine rank orders all active jobs according to three dispatching rules:

33

increasing order of Priority (PRI), increasing order of Minimum Slack (MS), and

decreasing order of Total Processing Time (TPT).

 If t = to THEN
 Create J arrays of set A(t) from job and user input databases [3.4.16]
 Number the arrays of aj sequentially, j = 1, 2, 3, …
 ENDIF
 J = |A(t)|
 Sort the J elements of A(t) by: [3.4.17]

1) Increasing order of priority number (PRIj)*
*A Successor will have same priority number as their predecessor

2) Then by increasing order of Minimum Slack (MSj)
3) Then by decreasing order of Total Processing Time (TPTj)

 Place ordered elements of A(t) in P(t), sequentially renumber the J elements of P(t);
 pj ⃪ ai, i = 1, 2,..., J, j = 1, 2, 3, …, J [3.4.18]

 Priority number is a user defined attribute of each job which signifies the

importance the organization places on completion of that particular task. RSD’s

priorities are outlined in Chapter 1. The MS and TPT dispatching rules ensure that the

most difficult jobs (most processing time) to schedule are given priority over easier ones.

Specifically, big jobs (greater man-hours) that have the smallest difference between their

deadline and the current date are given the highest priority. For example, after the jobs

have been ordered according to their priority number, they will be ordered according to

smallest MS within each priority. Since all jobs with a predecessor have the same

priority as their predecessor, this operation in effect rank orders jobs in order of their

stated precedence. If there are jobs of the same priority with the same MS value, the

algorithm will place priority on the one with the greatest amount of work left to be done

(TPT). This prioritizing process can easily be accomplished with standard Microsoft

Excel functions along with some additional Visual Basic Application (VBA) coding. The

final line of the algorithm, [3.4.18] is used to sequentially renumber the elements pj of the

34

priority set P(t) to enable the sequential operations of the SPSS algorithm that was

presented in section 3.4.

 3.4.2. Insertion Subroutine

 A job j is processed by the Insertion subroutine once it is determined to be a

member of the set D(t). This routine performs the necessary operations required to

identify valid times to schedule job dn

The first operation of the insertion subroutine on line [3.4.19] calculates Work

Hours (WH) for each job j. This operation finds the number of range periods that will

need to be scheduled for each job. For example, if an Electrician job has sixteen hours of

processing time remaining (MH) and the job requires three Electricians per hour, then the

number of range periods required to finish the job equals:

. A comparative test is conducted for three

different resources: range availability, man-power availability, and heavy equipment

availability. Three tests, one for each resource, are embedded within the Insertion

subroutine. They are called range availability test, manpower availability test, and

equipment availability test.

HOURS = 16 5.33 6.
3

  = =    

 For job dn: SET HOURS = n

n

MH
WPH
 
 
 

[3.4.19]

 The following three sections discuss the comparative tests performed within the

Insertion subroutine starting with the range availability test.

35

 3.4.3. Range Availability Test

 Range Test
 START
 FOR dn Search R(t)(Row = “SITEn”) from (SW(t) + 1) to (EW(t) -1) [3.4.20]
 to find the maximum length string of consecutive free periods

SET BG = First free period in string
 SET FS = Last free period in string
 WT = FS – BG + 1 [3.4.21]

 The range availability test determines if there is sufficient time on day t to

perform the required work on range “SITEn” for job n, a member of the decision set D(n).

The first operation the range test performs is to search within the range resource matrix

R(t) to find consecutive free periods in the row labeled “SITE” and within the columns

(SW(t) + 1) to (EW(t) -1). Only one event can be scheduled on a range at any one time,

so this matrix is a 0-1 matrix. R(t) is defined as follows:

 ()
1 if the range is not scheduled during a period

R t
0 if the range is already scheduled during a period


= 


The algorithm searches between the periods specified by the matrix WW (Work Week).

The WW matrix specifies the hours that manpower will be available to conduct work

during the scheduling week (see equation [3.2.2]). Since a hour of travel time is needed

to travel to and from every location, the algorithm only searches an hour after start of

work (SW(t) + 1) to an hour before end of work (EW(t) – 1) (see line [3.4.20]). Three

new variables WT (Work Time), BG (Begin), and FS (Finish) are used to keep track of

the string length as well as the beginning and finish periods of the string. Figure 3.3 is

used to illustrates this process.

36

Figure 3.3 Sample R(t) Matrix

The usual work shift per day is nine hours, except on Friday when it is eight hours. In the

example in Figure 3.7, the values of SW(t) and EW(t) for the row “SITE 2” are “7” and

“15” respectively, which represents a nine hour shift. The longest string of consecutive

free periods is between periods “9” and “15”, which equals seven consecutive hours.

Since the algorithm limits the search to periods between (SW(t) + 1) and (EW(t) – 1), the

actual values of BG and FS will be “9” and “14”, respectively with WT equal to “6” (see

equation [3.4.21]). These values are used throughout the rest of this test as well as the

following tests to determine if there exists a feasible time to insert job n into the schedule.

 IF (HOURS < 4) AND (WT ≥ HOURS) THEN [3.4.22]
 (START = BG) AND (END = FS)

GOTO Manpower Test
 ELSEIF (HOURS ≥ 4) AND (WT ≥ 4) [3.4.23]

(START = BG) AND (END = FS)
GOTO Manpower Test

 ELSEIF (HOURS < 4) AND (WT < HOURS) [3.4.24]
RETURN NO SOLUTION

 ELSEIF (HOURS ≥ 4) AND (WT < 4) [3.4.25]
RETURN NO SOLUTION

 ENDIF
 STOP

The lines of pseudo code above are a series of scheduling rules that when applied to the

string, analyze the feasibility of inserting job n in the beginning of the string found on

line [3.4.20]. The first test on line [3.4.22] is called the “Small Job Insertion Rule”. This

37

rule stipulates that if HOURS is less than four (small job), then the value of WT must

meet or exceed the value of HOURS. The next line [3.4.23], is called the “Big Job

Insertion Rule”. This rule stipulates that if HOURS is four hours or longer, then the

value of WT must be at least four hours. These two rules combined equate to scheduling

rule used by RSD decision makers that do not allow a big job (≥ 4 hours) to be scheduled

unless at least four hours of range time is available. If the job is small, then there needs

to be at least as many hours of range time available as the job takes to complete. These

rules are in place to cut down on the amount of travel time wasted traveling to and from

work sites. If these rules return a TRUE, then the global variables START and END are

assigned the values of BG and FS, respectively, regardless of the length of the job.

Therefore, at this point the job can be inserted anywhere within that string, depending on

the availability of manpower and equipment, which are tested in the next two tests. The

last two rules on lines [3.4.24] and [3.4.25], called “Utility Rules”. They eliminate jobs

from consideration that have less range time than the job takes to complete, for small

jobs, or that do not have at least four hours of range time for big jobs.

If either the small job or the big job insertion rules pass, the first and last value of

the string is saved in the global variables START and END. The algorithm then

continues onto the manpower availability test. If the Utility rules are TRUE, then the

insertion subroutine is terminated and the top-level routine continues on to the next job.

 3.4.4. Manpower Availability Test

 The manpower availability test performs the same type of search as the range test

but does it within the resource matrix M(t) (see line [3.4.27]). Local variables BG and FS

are used as the start and finish of the manpower string. By applying the scheduling rules

38

on lines [3.4.28] through [3.4.32], BG and FS are compared to the global variables

START and END; the start and end times of the maximum range string. The operation

on line [3.4.27] looks for a value in the M(t) matrix, in the row “Type” and within

columns (START - 1) to (END + 1) that is greater than or equal to the value WPHn

(Workers Per Hour) for job n.

 Manpower Test
 START
 BG = FS = 25 [3.4.26]
 FOR dn search matrix M(t)[“TYPEn”, i] for i = (START – 1) to (END + 1) [3.4.27]
 for maximum length string of consecutive periods where M(t) ≥ “WPHn”
 SET BG = First period in string that M(t) ≥ “WPHn”
 SET FS = Last period in string that M(t) ≥ “WPHn”

Figure 3.4 is a sample M(t) matrix. If for example, a job requires two Carpenter

Workers Per Hour (WPH = 2), the algorithm could form a string seven periods long.

Instead of searching the whole time frame provided by the matrix WW, this algorithm

searches only those periods that have already been proven valid via the range test, namely

the values START and END. Because the manpower must be scheduled during the time

they are in transit to and from the work site (1 hour each way), the algorithm will search

one hour before and one hour after the times found in the range test. In this example, by

searching only between the periods (START – 1) and (END + 1) which are between “8”

and “15”, respectively, the maximum feasible string length for manpower is six periods

with BG = “8” and FS = “13”.

39

Figure 3.4 Sample M(t) Matrix

 After the algorithm finds the maximum string length of manpower resources for

job dn, the next step is to compare and shape the two strings to create a maximum

combined feasible region. Logical equations [3.4.28] through [3.4.32] below create the

maximum region so that the length of the manpower string overlaps the range resource

string by one hour on each end (allows for worker transportation to and from the range).

Equation [3.4.28] returns NO SOLUTION if no common manpower string was found

within the bounds of the available range time. Line [3.4.26] sets the values BG and FS to

25 so that this logical check can be made. Equation [3.4.29], called the Containment

Rule (CONR) returns a value of TRUE if the manpower resource overlaps the range

resource by exactly one hour on each end (see Figure 3.5).

Figure 3.5 CONR

40

 IF BG = FS = 25 THEN [3.4.28]
 RETURN NO SOLUTION
 ELSEIF [START > BG] AND [END < FS] THEN [3.4.29]
 GOTO NEXT
 ELSEIF [START ≤ BG] AND [END ≥ FS] THEN [3.4.30]
 (START = BG + 1) AND (END = FS - 1)
 GOTO NEXT
 ELSEIF [START ≤ BG] AND [END < FS] THEN [3.4.31]
 START = BG + 1
 ELSEIF [START > BG] AND [END ≥ FS] THEN [3.4.32]
 END = FS - 1
 ENDIF

Equation [3.4.30], called the Both Overlap Rule (BOLR), determines if the range string

overlaps the manpower string at both the lower and upper bounds. If the rule is TRUE,

both START and END values are adjusted to a feasible range (See Figure 3.6).

Figure 3.6 BOLR

Equations [3.4.31] and [3.4.32] are called the Left Overlap Rule (LOLR) and Right

Overlap Rule (ROLR) respectively. They return a value of TRUE if the range string

overlaps the manpower string on either the left or the right sides and adjusts the range

string accordingly (see Figures 3.7 and 3.8)

41

 Figure 3.7 LOLR Figure 3.8 ROLR

The remaining operations of the manpower test determine if the newly adjusted range

string passes the same Small Job Insertion and Big Job Insertion rules from the range test

section (equations [3.4.22] and [3.4.23]). It is important to note that WT (equation

[3.4.33]) is calculated using the values START and END instead of BG and FS, which is

the span of the feasible range time.

 WT = END – START + 1 [3.4.33]
 IF [Small Job Insertion Rule] is TRUE THEN [3.4.34]
 (START = START) AND (END = START + HOURS)
 GOTO Equipment Test
 IF [Big Job Insertion Rule] is TRUE THEN [3.4.35]
 (START = START) AND (END = START + Min(WT, HOURS))
 GOTO Equipment Test
 IF [Utility Rules] are TRUE THEN [3.4.36]
 RETURN NO SOLUTION
 STOP

 At this point the START and END times for the job jn will be set if equations

[3.4.34] or [3.4.35] have a value of TRUE. Otherwise, NO SOLUTION will be returned

and the Insertion subroutine will terminate. If equation [3.4.34] (Small Job) is TRUE,

then the job will start at the earliest possible time (START) and end when the job is done

(START + HOURS). If equation [3.4.35] (Big Job) is TRUE, then the job will again

42

start as early as possible (START) and end at the expiration of either the available range

time or after the job is complete [min(WT, HOURS)], whichever occurs first. After

START and END times are set, the algorithm progresses to the equipment availability

test.

 3.4.5. Equipment Availability Test

 The last check to make on available resources is the availability of heavy

equipment. The vast majority of the heavy equipment is used exclusively by the heavy

equipment operators (TYPE = H). Therefore, the “EQP” element of the array dn will

usually contain the empty set (∅) unless the job is tasked to the heavy equipment

operators. If (EQP)n equals ∅, then no equipment on the equipment list (see Appendix C.

List of Resources) is required and the job is ready to be scheduled (see equation [3.4.37]).

If (EQP)n contains a list of required equipment (EQP ≠ ∅) and every element of the array

(EQP)n

 Equipment Test

 is also an element of the array E(t), then the job is ready to be scheduled as well

(see equation [3.4.38]).

 START
 IF (EQP)n = ∅ THEN [3.4.37]
 GOTO NEXT
 ELSEIF (EQP)n ⊆ E(t) THEN [3.4.38]
 GOTO NEXT
 ELSE [3.4.39]

RETURN NO SOLUTION
 ENDIF

Otherwise, the array (EQP)n contains elements that are not also elements of the

array E(t), so the job is not ready to be scheduled and the insertion subroutine will be

terminated for job dn (see equation [3.4.39]). The algorithm assumes that equipment is

used only once per day. Heavy equipment is not particularly restrictive because there are

43

multiple pieces of redundant equipment. Additionally, due to the set up times and longer

transportation times of the heavy equipment, scheduling equipment in a similar fashion to

manpower would not be efficient.

 NEXT
 sn = (SWN, SITE, TYPE, WPH, (EQP), START, END), sn ⃪ dn [3.4.40]
 dn ⃪ (“MHn” | MHn = MHn – Min[6, (END-START+1)]) [3.4.41]
 M(t) ⃪ (M(t) – WPHn | Row = “TYPEn”, Column = (START –1) to (END + 1))
 R(t) ⃪ (R(t) – 1 | Row = “SITEn”, Column = (START to END))
 E(t) ⃪ E(t) \ (EQP)n
 STOP

 Once a job dn has passed all three tests (range, manpower, and equipment), it is

ready to be scheduled. This algorithm schedules a job by mapping elements of dn to sn as

well as adding the START and END times to sn that were calculated in the manpower test

(equations [3.4.34] and [3.4.35]). The START and END times found in those equations

are the start and end of the range time for SITEn of job sn. Equation [3.4.40] creates the

array sn, a member of the set S(t). After sn is created, the last operation to accomplish is

to adjust the level of remaining man-hours in dn and the levels of available resources in

the sets M(t), R(t), and E(t) (see four equations at line [3.4.41]).

 Once SPSS algorithm steps through all jobs on the fifth day (Friday) it runs the

Metric subroutine. This routine is explained in the next section.

3.5. Metrics Subroutine

 The purpose of this study is to create an analytical scheduling tool that increases

the number of jobs scheduled per week and decreases the amount of time it takes to

generate an initial shell schedule via the current scheduling process. The following

metrics will quantify any improvement in these objectives. There are two types of

suggested metrics, objective and improvement metrics. The objective metrics directly

44

measure the objectives of this study and are meant to be used to compare the schedule

constructed by the current scheduling methodology to the schedule constructed by the

SPSS heuristic of Chapter 3. The improvement metrics are meant to be used as

acceptance/rejection criteria for some type of interchange metaheuristic, such as the tabu

or simulated annealing neighborhood search algorithms that were discussed in Chapter 2.

This pseudo code for this subroutine is not explicitly stated, rather a discussion of each

metric is provided below.

 3.5.1. Objective Metrics

 The first objective metric measures the daily percentage of active jobs scheduled

by either method (current or SPSS algorithm). The cardinality of each days scheduled set

(S) and active set (A) are used to calculate a percentage. Percentages for each method

can be compared to determine if the SPSS algorithm schedules more jobs than the current

method. This metric could also be used as an improvement metric.

Daily Percentage of Scheduled Jobs:
S(t)

DPSJ =
A(t)t

 [3.5.1]

 The second objective metric measures the amount of time saved by using the

algorithm to construct a schedule versus the current method.

Schedule Build Differential: SBD = (hours for current process) - (hours for algorithmic

process) [3.5.2]

 3.5.2. Improvement Metrics

 The first improvement metric measures the Lateness (L) of a schedule, which is

the cumulative number of days that the active jobs of the RSD are beyond their due date

(late) for the entire week. The algorithm calculates the number of days that an active job

45

is beyond its scheduled due date by subtracting the current day ("Friday") from each jobs

Dead Line (DL) only if the job has already exceeded its DL. It sums this value for every

such job in the sets P and D on Friday.

Lateness: L = ()DL t t > DL , t="Friday", p P(t) or d D(t)j j j j
j∀

− ∈ ∈∑
 [3.5.3]

 The last improvement metric calculates the number of unutilized man-hours for a

schedule in a week. This metric is calculated by summing all the elements of each matrix

M(t) for the entire week. It only calculates the unutilized man-hours for the time they are

actually scheduled to work (i.e. within the limits of the matrix WW).

Unscheduled Man-hours:

UMHTYPE

EW

t i SW
M(t) (TYPE, i), TYPE {B,C,E,H,S,W}

∀ =

∀ ∈∑ ∑ =
 [3.5.4]

3.6. Summary

 The algorithm presented in this chapter contains all the features of a greedy

method heuristic. The schedule that is created via its single-pass serial schedule

generating scheme is guaranteed to produce at least a feasible solution. Metrics provided

at the end of the chapter should determine if that schedule is a better solution than one

generated via current methods. The next chapter uses a sample set to further investigate

how the algorithm processes elements of an active set to construct a feasible schedule.

46

Chapter 4. Results and Analysis

4.1 Problem Sets

In this chapter, a six job example is used to help illustrate the processes within the

algorithm and to show that this algorithm will produce a feasible schedule. This first

section defines the problem sets used in the example. The example problem is outlined in

Section 4.2 and in Section 4.3 an analysis of the algorithm’s ability to construct a feasible

schedule is discussed.

Figure 4.1 depicts the abbreviated form of the arrays aj, pj, dj, and sj that are used

in the example problem.

}

j

j j j j j

j

j j j j

a

p SWN , MH , PRED , SUC

d

s SWN , START , END




 =  



 =  
Figure 4.1 Example Arrays

Figure 4.2 shows the six sample arrays, a1 through a6, of the sample set A(1). For

example, array a1 has a Service/Work Order Number (SWN) of "E1", required man-

hours (MH) = "6", no predecessor (PRED), and a successor with SWN = "C1", which is

array a2

.

Figure 4.2 Sample Arrays

47

4.2 Example Problem

This example contains six jobs that can be scheduled on a single range within the

time periods 0800 to 1600. Figure 4.3 graphically shows how the sample six-array set of

A(1) is processed by the prioritize subroutine which is run at the beginning of the SPSS

routine. The left side of Figure 4.3 shows the sample arrays as they would appear in the

active set A(1) once they are been created. The same arrays appear in their sorted order,

in the far right column of Figure 4.3, in the prioritized set P(1) as they would once the

prioritize subroutine is run. The arrays are prioritized in accordance with the dispatching

rules discussed in Section 3.4.1. Of note, the precedence constraints are maintained after

the jobs are prioritized and mapped to the set P(1).

Figure 4.3 Prioritize Subroutine

Figures 4.4 through 4.7 graphically display the remaining operations of the SPSS routine.

In Figure 4.4, the three columns P(1), D(1), and S(1) depict the status of the those sets for

the first scheduled day after the second pass through the inner WHILE loop of the SPSS

routine.

48

Figure 4.4 SPSS Routine (t = 1 “Monday”, n = 1, 2)

 The operation labeled “Step 1” corresponds to line [3.4.9] on the first pass

through the inner WHILE loop (n = 1). This operation maps pn to dn if the job associated

with pn has no predecessors or if its predecessors have been completely scheduled. The

former is true in this case. Additional operations on this first pass will remove array p1

from the set P(1). Step 2 depicts the operation that takes place on the second pass (n still

= 1) through the inner WHILE loop, of the SPSS routine, when the “IF” logic statement

on line [3.4.7] returns a “TRUE”. This is because array d1 is a member of set D(1).

Therefore, the insertion routine is performed on d1. It is subsequently inserted into the

set S(1). Step 3 in Figure 3.4 shows the remaining operations that are contained in the

Insertion routine. Job B1’s “MH1

” value is updated to reflect that it was completely

scheduled during hours 8, 9, and 10 which correspond to clock time 0800:00 to 1059:59.

Figure 4.5 SPSS Routine (t = 1 “Monday”, n = 2)

49

Figure 4.6 SPSS Routine (t = 1 “Monday”, n = 7)

Figure 4.6 depicts the results of the remaining iterations of the inner WHILE loop

within the SPSS routine (n = 7) for day 1. At this point, all jobs have been processed for

the first day. The results show that jobs B1 and E1 have been completely scheduled

which allows job C1, which is a successor of E1, to be mapped into the decision set D(1).

Sufficient resources did not exist to schedule any resource to job C1. Therefore, job H1

could not be pulled into the decision set D(1) because it is a successor of job C1. Job S1

was mapped into the decision set D(1) but was only partially scheduled as indicated by

16 man-hours remaining to completion. In this case, two hours of time is scheduled

because two Surveyors are used per time period, for a total of four man-hours scheduled.

Because job S1 is not completely scheduled job H2, a successor of S1, is not mapped to

the decision set D(1). Since n = 7, which is greater than J (J = 6), the inner WHILE loop

will STOP processing jobs for this first day (t = 1). The algorithm then continues on to

line [3.4.11] where n is reset for the next day’s schedule and the day is incremented to

Tuesday (t = 2). The resulting schedule for this example is job B1 from 0800 to 1059:59,

job E1 from 1100 to 1359:59, and job S1 from 1400 to 1559:59.

50

Figure 4.7 Prioritize Subroutine (t = 2 “Tuesday”, n = 0)

Figure 4.7 depicts the final operations that take place before the algorithm returns

to the start of the outer WHILE loop to begin scheduling day 2. The first of these

operations, on line [3.4.12], populate the a new active set A(2) with jobs from the

previous priority set P(1) and any jobs in the previous decision set D(1) with man-hours

greater than zero. The A(2) column of Figure 4.7 shows the results of that operation.

Four jobs remain to be scheduled on the second day. The next line in the algorithm,

[3.4.13], processes the arrays of A(2) in accordance with the Prioritize subroutine and

places them in the new priority set P(2). Of note, the second and third priority jobs from

the first day (Monday) are now the lowest priority jobs of the four remaining. This is

done to illustrate how the variables Minimum Slack (MS) and Total Processing Time

(TPT) can affect the priority ranking of jobs from day to day. This is an important aspect

of this algorithm.

Lines [3.4.14] and [3.4.15] seed the new decision set D(2) with arrays that were

previously in D(1) and then clears out those arrays from P(2). This is depicted in the

columns P(2) and D(2) of Figure 4.7. The new decision set D(2) is seeded so that no

further logic is necessary to use the same algorithm from day to day. In this case, job C1

would not have been pulled into the new decision set D(2) on day two because although

the its predecessor has been completely scheduled, it is not a member of the set D(2) as

the logic on line [3.4.9] in the inner WHILE loop stipulates.

51

4.3 Analysis

The example in Section 4.2 indicates that the greedy method employed in this

research via the SPSS scheduling scheme will construct a valid schedule. As discussed

in Chapter 2, this scheduling algorithm will produce an active schedule. In an active

schedule, events cannot be scheduled any earlier without violating technological

constraints, which is referred to as a left-shifted schedule. This is the reason each job is

scheduled as early as possible within the feasible period of time (i.e. on the left side of

the string). Because the algorithm inserts the highest priority job in the next available

position, the algorithm will not utilize all the available range time and manpower. An

improvement metaheuristic is required to “fill out” the empty portions of this schedule.

Options for an improvement algorithm should be studied to maximize the number of jobs

scheduled via this algorithm.

52

Chapter 5. Conclusions and Recommendations

This chapter summarizes the research of this graduate research project. The key

points of the research are reemphasized and recommendations for future work are

suggested.

5.1 Conclusions

 This research explores possible methods of constructing a schedule for a complex

resource constrained project scheduling problem. Multiple analytical solution methods

are studied. A tractable solution method which solves to optimality is not feasible for this

problem due to its computational complexity. Ultimately, a greedy heuristic method is

used to construct a schedule for Eglin’s Range Services Division. The algorithm created

in this research utilizes a single-pass serial scheduling scheme along with a priority list to

construct a feasible schedule. The priority lists are created with dispatching rules that , in

prior studies, have proven to be both efficient and effective. Analysis of a sample

problem in Chapter 4 indicates that this algorithm will construct an active and feasible

schedule. Metrics to use for analytical comparisons between this schedule and one

created by the current methodology are provided in Chapter 3. Furthermore, additional

metrics are suggested that can be used as acceptance, rejection, or termination criteria for

an improvement metaheuristic.

5.2 Recommendations for Future Work

 This research was intended to provide a practical scheduling tool for the 46th Test

Wing at Eglin AFB, FL. An algorithm was created that can be used to demonstrate an

analytical solution method for a scheduling problem that is otherwise done by hand. The

algorithm of this research can be coded into Microsoft Excel, with a minor amount of

53

Visual Basic for Applications (VBA) coding. Once this algorithm is coded, the following

future work is recommended:

- Incorporate a metaheuristic improvement algorithm to the schedule construction

algorithm of this research. There will be un-utilized range time and manpower

left over after the SPSS routine is run. An Interchange metaheuristic could

possibly create additional space for the scheduling of more jobs.

- The algorithm needs to be verified and validated against the current scheduling

process to ensure it adequately models the current scheduling process.

- Once the algorithm is verified and validated, it should be tested to determine to

what degree it improves upon the current scheduling process, with respect to the

number of jobs it can schedule and the time it takes to create an initial shell.

- Ultimately, a verified and validated scheduling tool should be incorporated into

the current 46th Test Wing’s current scheduling suite called the Center Scheduling

Enterprise (CSE).

54

Appendix A. List of Acronyms

AAC

AFB

AFMC

BM

CSE

DL

DoD

DMS

ETTC

EQP

EW

IWO

MH

MS

PRED

PRI

RC

RCPSP

RSD

SUC

SPSS

Air Armament Center

Air Force Base

Air Force Materiel Command

Building Maintenance

Center Scheduling Enterprise

Dead Line

Department of Defense

Direct Mission Support

Eglin Test and Training Center

Equipment

End Work

Internal Work Order

Man-Hours

Minimum Slack

Priority Number

Predecessor

Range Construction

Resource Constrained Project

Scheduling Problem

Range Support Division

Successor

Single-Pass Serial Schedule

55

SW

SWN

TE

TO

TW

USAF

WPH

WT

WW

Start Work

Service / Work Order Number

Test Engineer

Task Order

Test Wing

United States Air Force

Workers Per Hour

Work Time

Work Week

56

Appendix B. InDyne Maximum Work Time Policy

The goal of the InDyne ETTC O&M Contract Maximum Work Time Policy is to

establish guidelines for supervisors to consider when making decisions about overtime.

Supervisors should look ahead, plan man hours against workload and limit the use of

overtime as the shock absorber for peaks and valleys in workload. Although all of these

restrictions can be waived by the indicated level of authority, supervisors should manage

their people within these restrictions as much as possible.

 - The Maximum Work Time per day shall be 12 hours; the Director/Office Manager

can pre-approve up to 16 hours per day.

 - The Maximum Work Time per week shall be 60 hours; the Director/Office Manager

can pre-approve up to 72 hours per week.

 - The General Manager’s approval is required before an employee can work periods

exceeding those the Directors/Office Managers can approve.

 It is also important to ensure there is adequate rest period between shifts.

Supervisors should manage work schedules so employees have, at a minimum, time

enough to drive home, get some rest and drive back to work before they start the next

shift.

 - The normal time between shifts shall be at least 8 hours; the Director/Office Manager

can pre-approve periods less than 8 hours.

ETTC CONTRACTOR PROPRIETARY
MAY NOT BE CURRENT WHEN PRINTED – UNCONTROLLED

57

Appendix C. List of Resources

58

Appendix D. Single-Pass Serial Scheduling Algorithm

Define Parameters and Variables:
Parameters:

t ≡ Current scheduling day (MM:DD:YYYY), t ∈ {(1:1:2009), (1:2:2009),...} [3.2.1]

WW ≡ Work Week, 2x5 matrix of starting (SW) and ending (EW) times for [3.2.2]
 schedulable work during day t for the weekly schedule

Variables:

Kr(t) ≡ Array of available resources for each day t, r ∈ {R, M, E} [3.2.3]
 R(t) ≡ Matrix of range availability per period for day t
 M(t) ≡ Matrix of available man-hours available per period for day t
 E(t) ≡ Array of heavy equipment available for day (t)

A(t) ≡ Active Set of arrays aj for each job j in a scheduling day t, j ∈ {1, 2, 3,…, J}[3.2.4]
 aj ≡ (SWN, SITE, PRI, MH, WPH, TYPE, (EQP), PRED, SUC, DL, MS)
 SWNj ≡ Service Request or Work Order Number of job j
 SITEj ≡ Work site identifier
 PRIj ≡ Priority number, ∈ {1, 2, 3}
 MHj ≡ Man Hours required for job j, ∈ {0, 1, 2, 3,...}
 WPHj ≡ Workers Per Hour required for job j, ∈ {1, 2, 3,...}
 TYPEj ≡ Type of worker required for job j, ∈ {B, C, E, H, S, W}
 B = Building Maintenance; C = Carpenter; E = Electrician;
 H = Heavy Equipment Operator; S = Surveyor; W = Welder
 (EQP)j ≡ Array of Heavy Equipment required for job j
 PREDj ≡ Job that must be completed prior the start of job j (Predecessor)
 SUCj ≡ Job that can start only once job j is completed (Successor)
 DLj ≡ Dead Line of job j, ∈ {(MM:DD:YYYY)}
 MSj ≡ Minimum Slack of job j; MSj ≡ DLj - (t + TPTj) [3.2.5]
 TPTj ≡ Total Processing Time = MHj + ∑MH of all Successors of job j

P(t) ≡ Prioritized, set of arrays pj of sorted elements of A(t); pj ← aj, ∀ j [3.2.6]

D(t) ≡ Decision, set of arrays dj of schedulable jobs from P(t); dj ← pj, [3.2.7]

S(t) ≡ Scheduled, set of arrays sj of scheduled jobs [3.2.8]
 sj ≡ (SWN, SITE, TYPE, WPH, (EQP), START, END)
 START = Start of work for job j on SITEj; END = End of work for job j on SITEj

WTj = MHj/WPHj; Work Time, hours required at SITEj to complete job j, ∈ [3.2.9]

59

Appendix D. Single-Pass Serial Scheduling Algorithm Cont.

Single Pass Serial Scheduling Routine:

 START
 n = 0 [3.4.1]
 t = to [3.4.2]
 A(t) = P(t) = D(t) = S(t) = ∅ [3.4.3]
 RUN Prioritize Subroutine [3.4.4]
 WHILE t ≤ (to + 5 days) DO [3.4.5]
 BEGIN

WHILE n ≤ J DO [3.4.6]
BEGIN

 IF dn ∈ D(t) THEN [3.4.7]
 RUN Insertion Subroutine
 ENDIF
 n = n + 1 [3.4.8]
 D(t) ⃪ {pn | “PREDn” = 0 OR “PREDn” = “SWNi” with “MHi” = 0}; [3.4.9]
 ∀ i, i ∈ {1, 2, 3, …,J}, i ≠ n, dn ⃪ pn
 P(t) ≡ {pj | “SWNj” ∉ D(t)}, ∀ j [3.4.10]
 END WHILE
 n = 0
 t = t + (1 day) [3.4.11]
 A(t) ⃪ P(t-1) ∪ {dj ∈ D(t-1) | “MHj” > 0}, ∀ j, aj ⃪ pj, aj ⃪ dj [3.4.12]
 RUN Prioritize Subroutine [3.4.13]
 D(t) ⃪ {pj ∈ P(t) | “SWNj” = “SWNi” of di ∈ D(t-1)}, ∀ i, j [3.4.14]
 P(t) ≡ {pj | “SWNj” ∉ D(t)}, ∀ j [3.4.15]
 END WHILE
 Metric Subroutine
 STOP

Prioritize Subroutine:

 If t = to THEN
 Create J arrays of set A(t) from job and user input databases [3.4.16]
 Number the elements of aj sequentially, j = 1, 2, 3, …
 ENDIF
 J = |A(t)|
 Sort the J elements of A(t) by: [3.4.17]

4) Increasing order of priority number (PRIj)*
*A Successor will have same priority number as their predecessor

5) Then by increasing order of Minimum Slack (MSj)
6) Then by decreasing order of Total Processing Time (TPTj)

 Place ordered elements of A(t) in P(t), sequentially renumber the J elements of P(t);
 pj ⃪ ai, i = 1, 2,..., J, j = 1, 2, 3, …, J [3.4.18]

60

Appendix D. Single-Pass Serial Scheduling Algorithm Cont.

Insertion Subroutine:

For job dn: SET HOURS = n

n

MH
WPH
 
 
  [3.4.19]

Range Test
 START
 FOR dn Search R(t)(Row = “SITEn”) from (SW(t) + 1) to (EW(t) -1) [3.4.20]
 to find the maximum length string of consecutive free periods

SET BG = First free period in string
 SET FS = Last free period in string
 WT = FS – BG + 1 [3.4.21]
 IF (HOURS < 4) AND (WT ≥ HOURS) THEN [Small Job Insertion Rule] [3.4.22]
 (START = BG) AND (END = FS)

GOTO Manpower Test
 ELSEIF (HOURS ≥ 4) AND (WT ≥ 4) [Big Job Insertion Rule] [3.4.23]

(START = BG) AND (END = FS)
GOTO Manpower Test

 ELSEIF (HOURS < 4) AND (WT < HOURS) [Utility Rule] [3.4.24]
RETURN NO SOLUTION

 ELSEIF (HOURS ≥ 4) AND (WT < 4) [Utility Rule] [3.4.25]
RETURN NO SOLUTION

 ENDIF
 STOP

61

Appendix D. Single-Pass Serial Scheduling Algorithm Cont.

Manpower Test
 START
 BG = FS = 25 [3.4.26]
 FOR dn search matrix M(t)[“TYPEn”, i] for i = (START – 1) to (END + 1) [3.4.27]
 for maximum length string of consecutive periods where M(t) ≥ “WPHn”
 SET BG = First period in string that M(t) ≥ “WPHn”
 SET FS = Last period in string that M(t) ≥ “WPHn”
 IF BG = FS = 25 THEN [Infeasible] [3.4.28]
 RETURN NO SOLUTION
 ELSEIF [START > BG] AND [END < FS] THEN [Both Overlap Rule] [3.4.29]
 GOTO NEXT
 ELSEIF [START ≤ BG] AND [END ≥ FS] THEN [Contain Rule] [3.4.30]
 (START = BG + 1) AND (END = FS - 1)
 GOTO NEXT
 ELSEIF [START ≤ BG] AND [END < FS] THEN [Left Overlap Rule] [3.4.31]
 START = BG + 1
 ELSEIF [START > BG] AND [END ≥ FS] THEN [Right Overlap Rule] [3.4.32]
 END = FS - 1
 ENDIF
 WT = END – START + 1 [3.4.33]
 IF [Small Job Insertion Rule] is TRUE THEN [3.4.34]
 (START = START) AND (END = START + HOURS)
 GOTO Equipment Test
 IF [Big Job Insertion Rule] is TRUE THEN [3.4.36]
 (START = START) AND (END = START + Min(WT, HOURS))
 GOTO Equipment Test
 IF [Utility Rules] are TRUE THEN
 RETURN NO SOLUTION
 STOP

62

Appendix D. Single-Pass Serial Scheduling Algorithm Cont.

Equipment Test
 START
 IF (EQP)n = ∅ THEN [3.4.37]
 GOTO NEXT
 ELSEIF (EQP)n ⊆ E(t) THEN [3.4.38]
 GOTO NEXT
 ELSE [3.4.39]

RETURN NO SOLUTION
 ENDIF
 NEXT
 sn = (SWN, SITE, TYPE, WPH, (EQP), START, END), sn ⃪ dn [3.4.40]
 dn ⃪ (“MHn” | MHn = MHn – Min[6, (END-START+1)]) [3.4.41]
 M(t) ⃪ (M(t) – WPHn | Row = “TYPEn”, Column = (START –1) to (END + 1))
 R(t) ⃪ (R(t) – 1 | Row = “SITEn”, Column = (START to END))
 E(t) ⃪ E(t) \ (EQP)n
 STOP

63

Appendix D. Single-Pass Serial Scheduling Algorithm Cont.

Metric Subroutine:

Calculate the following metrics after the SPSS routine cycles through the last day (t =

Friday):

Daily Percentage of Scheduled Jobs:

Objective Metrics

S(t)
DPSJ =

A(t)t

 [3.5.1]

Schedule Build Differential: SBD = (hours for current process) - (hours for algorithmic

process) [3.5.2]

Lateness: L =

Improvement Metrics

()DL t t > DL , t="Friday", p P(t) or d D(t)j j j j
j∀

− ∈ ∈∑ [3.5.3]

Unscheduled Man-hours:

UMHTYPE

EW

t i SW
M(t) (TYPE, i), TYPE {B,C,E,H,S,W}

∀ =

∀ ∈∑ ∑ =
 [3.5.4]

64

Appendix E. Blue Dart

Optimizing Your Schedule

In a perfect world, organizations would always have enough time and resources to

accomplish every task they are assigned. In reality, most organizations are overwhelmed

by the number of tasks they are appointed as well as constrained with too few resources

to accomplish them. Our country’s current economic situation dictates that everyone do

more with less; unfortunately, the Air Force is no stranger to this issue. Effectively

scheduling our dwindling resources is the linchpin to meeting mission requirements given

our current situation.

Typically, Air Force organizations are constrained in the amount of work they can

accomplish by: man-hours, equipment, material, workspace, and time. For example, a

flying Squadron would never schedule more flying sorties in a day than its pilots are

capable of flying or its Maintenance Squadron is capable of producing. To ensure all the

work gets done, given their constraints, most organizations employ labor intensive

scheduling processes. Unfortunately, the scheduling approach most organizations

employ frequently results in an ineffective schedule.

Organizations, particularly Air Force organizations, live and die by how well they

schedule their limited resources to accomplish mission oriented tasks. A simplistic

criterion of a successful schedule is whether all the required tasks are scheduled to be

completed prior to their due dates. A schedule built with only this goal in mind is

referred to as a “valid” schedule. On the other hand, an optimal schedule is designed to

efficiently utilize available resources to produce the maximum amount of work possible.

Although there may be reasons why organizations decide not to execute an optimal

65

schedule, but an optimal schedule does provide a best case from which an execution

schedule can be built.

Air Force organizations need to adopt scheduling practices that will allow them to

build optimal or even nearly optimal schedules rather than just valid schedules. It is very

difficult for their senior decision maker to understand when a true capacity limit has been

reached if an organization uses merely a valid schedule. Experience and intuition are

commonly used tools to assess when limits have been reached, but as is often seen,

experience and intuition are highly subjective and readily dismissed by decision makers

outside the organization.

Optimally built schedules provide organizations with the information they require

to effectively fight for resources when they are over tasked. More importantly, optimally

built schedules provide organizations with the ability to precisely quantify how much

work they can accomplish before such a limit, or upper bound, is reached. For example,

if your bagger at the grocery store determines that he has packed as many groceries into a

brown paper bag as possible [optimality], how could you justify asking him to pack one

more thing without first acknowledging that something must be removed? Information

based on an optimal schedule, which is a repeatable and mathematically defendable

process, provides decision makers and organizations alike with the information they need

to make more coherent decisions on task priorities when something must be “removed

from the bag.”

Within the field of Operations Research, there are several very useful and easily

applied tools that allow organizations to build optimal schedules. One powerful tool

often used in scheduling applications is linear programming. Linear programming is a

66

mathematical method that can produce optimal solutions to many types of scheduling

problems, both big and small. These tools can be easily programmed into user friendly

and readily available spreadsheet programs such as Microsoft Excel or incorporated into

existing scheduling software packages such as Patriot Excalibur.

Organizations that want to maximize their capacity should build their own user-

friendly and computer aided scheduling tools. Armed with these powerful tools,

organizations will have at their disposal a repeatable method of realistically scheduling as

much as possible without over-tasking their resources. Furthermore, these tools will

provide decision makers with the information they need to make well informed

operational decisions. After all, wouldn’t it be nice to focus on accomplishing the

mission instead of constantly chasing a schedule?

Contact your MAJCOM A-9 or the Air Force Institute of Technology Center for

Operational Analysis (AFIT-COA) for more information on simple ways to improve your

scheduling processes. Major Matt Liljenstolpe is an AFIT student in the Operations

Analysis program.

Keywords: Scheduling, Linear Programming, Air Force Institute of Technology Center
for Operational Analysis, A-9 Analysis and Lessons Learned

67

Bibliography

Artigues, C., Demassey, S., Neron, E. (eds.). 2008. Resource-constrained project

scheduling: Models, algorithms, extensions and applications. Hoboken, NJ:
Wiley.

Air Armament Center Fact Sheet. 96th Air Base Wing Public Affairs Office, Eglin AFB,

FL. 7 March 2009 http://www.eglin.af.mil/library/factsheets/factsheet.asp?id=6476.

Burns, Dave. Supervisor of Range Support Division, InDyne Inc., Eglin AFB, FL.

Personal Interview. 22 January 2009.

French, S. 1982. Sequencing and scheduling: An introduction to the mathematics of

the job-shop. West Sussex, England: Ellis Horwood.

Heald, James. General Manager of InDyne Inc., Eglin AFB, FL. Personal Interview. 14

January 2009.

Kolisch, R. 1996. Serial and parallel resource-constrained project scheduling methods

revisited: Theory and computation. European Journal of Operational Research,
90: 320-333.

Murty, K.G. 1995. Operations research: Deterministic optimization models.

Englewood Cliffs, N.J.: Prentice-Hall.

Pinedo, M. 2008. Scheduling: Theory, algorithms, and systems 3rd ed. New York,

NY: Springer.

Yang, K.K. 1998. A comparison of dispatching rules for executing a resource-constrained

project with estimated activity durations. Omega International Journal of
Management Science, 26(6): 729-738.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

18-06-2009
2. REPORT TYPE

Graduate Research Project
3. DATES COVERED (From – To)

23-06-2008 - 18-06-2009
4. TITLE AND SUBTITLE

SINGLE-PASS SERIAL SCHEDULING HEURISTIC FOR EGLIN
AFB RANGE SERVICES DIVISION SCHEDULE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

 Liljenstolpe, Matthew, Major, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT-IOA-ENS-09C-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFMC 46 TW/OA Attn: Mr. Greg Hutto
 Room 229 Bldg 1
 West D St
 Eglin AFB, Florida 32542-5000 Phone: (850) 882-4646
 e-mail: Gregory.Hutto@Eglin.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)

N/A
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
N/A

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
 The Air Armament Center (AAC) located at Eglin Air Force Base (AFB) Florida, conducts test and evaluation of United States Air Force (USAF) weapons
systems. To enable this, the AAC operates the Eglin Test and Training Complex (ETTC), the largest test range in the United States. InDyne Corporation’s Range
Services Division (RSD) builds and maintains the infrastructure necessary to conduct world class test and training on the ETTC.
 The purpose of this research is to create a scheduling tool for the RSD that maximizes the number of prioritized jobs scheduled and reduces the man-hours
required to create a weekly schedule without exceeding a job’s deadline, manpower, or equipment constraints. RSD’s schedule belongs to a class of scheduling
problems called Resource Constrained Project scheduling Problems (RCPSP). RCPSPs attempt to schedule activities of either a known (deterministic) or variable
(stochastic) duration in a defined sequence given a finite amount of resources. Many analytical methods have been created to solve these types of scheduling problems.
Analytical solution methods which guarantee optimal solutions were not feasible due to the computational complexity of this RCPSP. Instead, a greedy solution
method is explored that uses a single-pass serial scheduling algorithm.
 A schedule construction algorithm is provided in the form of pseudo code to enable further research and development of a scheduling tool for this RCPSP.
Research on a schedule improvement metaheuristics and coding of the complete algorithm is required before it can be assimilated into existing scheduling software.

15. SUBJECT TERMS
Resource Constrained Project Scheduling Problem, Greedy Method, Precedence Constraints, Preemption, Non-Deterministic Polynomial, Polynomial, Computational
Complexity, Dispatching Rules, Priority List, Single Pass Serial Scheduling Algorithm, Heuristics, Construction Algorithm, Metaheuristic Improvement Algorithm,
Eglin Test and Training Complex, 46th Test Wing, Pseudo Code, Metrics.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

80

19a. NAME OF RESPONSIBLE PERSON
 Prof J.T. Moore, ENS

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
DSN: 785-3636, ext. 4528, e-mail: James.Moore@AFIT.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	AIR FORCE INSTITUTE OF TECHNOLOGY
	DEDICATION
	Appendix A. List of Acronyms
	Appendix B. InDyne Maximum Work Time Policy

